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To introduce this special issue on biological switches and clocks, we review the historical
development of mathematical models of bistability and oscillations in chemical reaction
networks. In the 1960s and 1970s, these models were limited to well-studied biochemical
examples, such as glycolytic oscillations and cyclic AMP signalling. After the molecular
genetics revolution of the 1980s, the field of molecular cell biology was thrown wide open to
mathematical modellers. We review recent advances in modelling the gene-protein
interaction networks that control circadian rhythms, cell cycle progression, signal processing

and the design of synthetic gene networks.
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1. INTRODUCTION

The living cell receives signals from its environment
and its own internal state, processes the information,
and initiates appropriate responses in terms of changes
in gene expression, cell movement, and cell growth or
death. Like a digital computer, information processing
within cells is carried out by a complex network of
switches and oscillators, but instead of being fabricated
from silicon transistors and quartz crystals, the cell’s
computer is an evolved network of interacting genes
and proteins. In the same way that computer design
was made possible by a sophisticated theory of
electronic circuitry, a basic understanding of cellular
regulatory mechanisms will require a relevant theory of
biomolecular circuitry. Although the ‘engineering
mindset’ is sorely needed to make sense of the cell’s
circuitry, the squishy, sloppy, massively parallel,
analogue nature of biochemistry is so different from
the solid-state, precise, sequential, digital nature of
computers that the mathematical tools and intellectual
biases of the solid-state physicist/electrical engineer are
not entirely appropriate to unravelling the molecular
logic of cell physiology. New modelling paradigms and
software tools are evolving to meet the challenges of the
new ‘systems biology’ of the living cell.

In this context, we organized a six-week workshop on
‘Biological switches and clocks’ at the Kavli Institute for
Theoretical Physics in Santa Barbara, CA, in summer
2007. The goal of the workshop was to bring together a
diverse group of theorists and experimentalists, who
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shared a common interest in understanding the molecu-
lar mechanisms that control the physiological properties
of living organisms. The programme was organized
around a few main themes: circadian rhythms; signalling
networks; cell cycle regulation; synthetic gene networks;
and deterministic and stochastic modelling. This special
issue of Interface comprised peer-reviewed contributions
from the participants in the workshop.

2. HISTORICAL CONTEXT

The first ‘theoretical biologists’ to consider biological
interactions as dynamical systems were Alfred Lotka
(a physical chemist) and Vito Volterra (a mathemati-
cian), who studied the pair of nonlinear ordinary
differential equations

dz
E_f(xa y)v dt

where z and y are the variables describing the time-
dependent state of a chemical or biological system.
Lotka (1924) and Volterra (1931) proposed models with
periodic solutions (clocks) and multiple steady states
(switches), which Volterra applied in the field of
population biology to describe predator—prey oscil-
lations and competition between species. For example,
the Lotka—Volterra equations for prey (z) and predator
(y) species are

dz b

a T
where a, b, c, ... are ‘rate’ constants. Equations (2.2)
have a one-parameter family of nested periodic
solutions given by a ‘conservation of energy’ condition

(z, v), (2.1)

d
Y- cxy — dy, (2.2)

E(z, y) = aln y—by + d1In z— cz = counst.
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The Lotka—Volterra equations for two competing
species (z and y) are

dx

— = ax(K —1z) — by,
jt (2.3)
d—gt/ = cy(L—y) — day.

If ¢/d<K/L<Db/a, then these differential equations
have two stable steady-state solutions

(z=K,y=0) and (z=0,y=1L),

separated by an unstable steady state at

= “bd—ac’

( bL—aK dK — cL)
T .

y=a bd—ac

Dynamical systems (2.2) and (2.3) are paradigms of
oscillations and bistability in a biological context.

In equations (2.2) and (2.3), z and y are interpreted
as populations of interacting biological species in some
common physical environment, but, in principle, they
could just as well be interpreted as concentrations of
reacting biochemical moieties in a cell. In the latter
interpretation, the systems would model biochemical
oscillations and bistability. But in the 1930s, no one was
seriously thinking along these lines, because there were
no known examples of biochemical clocks or switches.
The field of cell biology was only beginning to find its
roots in biochemistry and genetics.

To be sure, circadian rhythms and spontaneous
oscillatory electrical impulses were recognized as inter-
esting and important cellular phenomena, but the
molecular bases of these activities were completely
unknown. Embryonic development also inspired specu-
lations about how biochemical reactions might spon-
taneously break symmetry and generate spatial
patterns, but, aside from a singular paper by Turing
(1952), no one had any idea on how ‘biochemistry’
might escape the boring fate of uniform chemical
equilibrium. Classical biochemistry, with its linear
pathways converting substrates A and B into end
products Y and Z, seemed to offer little scope for exotic
chemical dynamics.

This situation changed dramatically in the 1950s and
the early 1960s, with the recognition of positive and
negative feedback control of gene expression (Jacob &
Monod 1961; Umbarger 1961) and with the discoveries of
bistability in lac operon induction (Novick & Weiner
1957), oscillations in yeast glycolysis (Chance et al. 1964;
Ghosh & Chance 1964) and periodic enzyme synthesis in
bacteria (Masters & Donachie 1966). Biochemists began
to appreciate the importance of switches and clocks in
molecular cell biology. In 1965, Brian Goodwin pre-
sented a simple model of periodic enzyme synthesis
based on the negative feedback of metabolic end
products on gene transcription (Goodwin 1965), and in
1968 Joseph Higgins published a ground-breaking paper
on the theory of biochemical oscillations in enzyme-
catalysed reaction networks (Higgins 1967). The work
by Field et al. (1972) and Field & Noyes (1974) on the
oscillatory Belousov—Zhabotinsky reaction provided the
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first detailed and predictive mechanistic description of a
reaction system showing bistability as well as temporal,
spatial and chaotic oscillations (Field & Burger 1985;
Epstein & Pojman 1998).

A particularly simple example of a chemical reaction
network exhibiting exotic dynamics (oscillations, bist-
ability, pattern formation, travelling waves) was the
‘Brusselator’ of Prigogine & Lefever (1968), whose
temporal dynamics are governed by

d
d_::f: =a—br+ c:zc?y—dx,
(2.4)
% = bz —cz’y—ey.
dt

For the special case e=0 (as originally proposed by
Prigogine & Lefever), this dynamical system has a
unique steady state at (z=a/d, y=>bd/ac), which is
unstable if d®—bd®+ ca®<0. When the steady state
is unstable, it is surrounded by a unique, stable limit
cycle oscillation (figure 1). For e#0, it is possible for
the Brusselator to exhibit bistability, as illustrated in
figure 2. The regions of oscillations and bistability come
together in a characteristic X-shaped two-parameter
bifurcation diagram (figure 3). Oscillations and bist-
ability in the Brusselator are based on the ternary
autocatalytic reaction, Y+2X—3X. Exploiting the
exotic properties of this reaction, Sel’kov (1968)
presented a simple, effective model of glycolytic
oscillations, and Schlogl (1972) devised a simple,
popular model of bistability.

The early theoretical work of Goodwin, Higgins,
Prigogine and Lefever, Sel’kov and Schlégl (Goodwin
1965; Higgins 1967; Prigogine & Lefever 1968; Sel’kov
1968; Schlogl 1972) convinced biophysical chemists
that oscillations and bistability were definitely to be
expected in biochemical reaction systems with positive
and negative feedbacks to destabilize steady-state
solutions. Although a ternary autocatalytic reaction
such as Y+2X—3X is unlikely in physical chemistry,
high-order nonlinearities in substrate concentration can
be achieved by multi-subunit enzymes of the type being
discovered at that time to regulate biochemical pathways
(Monod et al. 1965; Goldbeter & Lefever 1972).

Bistability and oscillations were also recognized, at
this time, as expected features of genetic regulatory
systems with positive and negative feedbacks. A simple
and elegant theoretical treatment of these cases was
published by Griffith in 1968. For a positive feedback
system (z=mRNA, y=protein),

dz a+ 1> dy
T RrE " e

(2.5)
Griffith showed that mRNA level can easily show
bistable (low or high) expression as a function of the
demand d for the protein (Griffith 1968a). In an
accompanying paper, Griffith (1968b) showed that the
corresponding negative feedback system,

d d
z ¢ —y=c:1:—dy,

LT 2.6
& K +y 0t (2:6)
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Figure 1. Oscillations in the Brusselator equation (2.4).
Parameter values: a=1, b=3, ¢=1, d=1 and e=0. (a) Phase
plane. Dashed lines are the z-nullcline, y=[(b+d)z—a]/
(cz?), and the y-nullcline, y=b/(cz). Solid line is the limit
cycle oscillation, which encircles the unstable steady state
(open circle). (b) One-parameter bifurcation diagram. Thick
solid line is a locus of stable steady-state solutions,
interrupted by (thin solid line) a locus of unstable steady-
state solutions. The circles indicate how the amplitude of the
limit cycle oscillation (maximum and minimum values of z)
depends on d between the two Hopf bifurcation (HB) points,
at d=0.6527 and 2.879.

has a unique, stable steady state (i.e. no bistability or
oscillations). However, a negative feedback loop with n
components,

doy . ap b

at  KP+al 0

d$2

ar T n T b 2.7
dz,

dt = Qp—1Tp—1 — bnxm

can exhibit limit cycle oscillations, as Griffith proved, if
the nonlinearity p of the feedback control is sufficiently
strong: p> sec”(w/n). These compelling results laid the
foundation for a theory of genetic regulatory systems
(Tyson & Othmer 1978).

3. INTERLUDE

Although these scientists in the 1960s and 1970s
created a mathematical theory of switches and clocks

J. R. Soc. Interface (2008)
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Figure 2. Bistability in the Brusselator equation (2.4).
Parameter values: a=1, b=3, c¢=1, d=0.2 and e=0.4.
(a) Phase plane. Dashed lines are the z- and y-nullclines as
shown in figure 1. Solid circles, stable steady states; open circle,
unstable steady state (saddle point). (b) One-parameter
bifurcation diagram. The solid line is the locus of steady-state
solutions. The upper and lower branches are stable steady
states; the intermediate branch tracks unstable steady states.
The stable and unstable branches come together at saddle-node
(SN) bifurcation points, at d=0.07894 and 0.2273.
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Figure 3. Two-parameter bifurcation diagram for the
Brusselator. The solid lines track the loci of SN bifurcations
in dependence on d and e. Note that, for example, for e=0.4,
two SNs occur at d=0.07894 and 0.2273, as shown in figure 2b.
The dashed lines track the HB points. For e=0, two HBs
occur at d=0.6527 and 2.879, as shown in figure 1b.

in molecular cell biology, there were only a few
examples of interesting cell physiology for which
enough molecular machinery was known to apply the
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Table 1. Molecular cell biologists recognizing a need for mathematical modelling.

Hartwell et al. (1999) ‘The best test of our understanding of cells will be to make quantitative predictions about their
behaviour and test them. This will require detailed simulations of the biochemical processes taking place within [cells]. ...
We need to develop simplifying, higher-level models and find general principles that will allow us to grasp and manipulate

the functions of [biochemical networks].’

Venter (1999) ‘If we hope to understand biology, instead of looking at one little protein at a time, which is not how biology
works, we will need to understand the integration of thousands of proteins in a dynamically changing environment.

A computer will be the biologist’s number one tool.’

Fraser & Harland (2000) ‘[R]esults to date show a dizzying array of signalling systems acting within and between cells. ... In
such settings, intuition can be inadequate, often giving incomplete or incorrect predictions. ... In the face of such
complexity, computational tools must be employed as a tool for understanding.’

Nurse (2000) ‘Perhaps a proper understanding of the complex regulatory networks making up cellular systems like the cell
cycle will require a ... shift from common sense thinking. We might need to move into a strange more abstract world, more
readily analyzable in terms of mathematics than our present imaginings of cells operating as a microcosm of our everyday

world.’

theory profitably. Notable successes involved theories
of glycolytic oscillations, cyclic AMP signaling, and
calcium oscillations and waves. For details, consult
the books by Goldbeter (1996) and Winfree (2001). But
other important problems—such as the origins of
circadian rhythms, the regulation of fruit fly develop-
ment, the coordination of cell growth and division or
the chemotactic response of motile bacteria—Ilay
beyond the grasp of theorists, because nothing was
known about the genes and proteins which controlled
these processes. Theoretical developments floundered
in the 1980s, awaiting that decade’s spectacular
advances in molecular genetics. By the early 1990s,
there were enough reliable clues about molecular
mechanisms for mathematical cell biologists to polish
up their equations and rev up their computers. Early
successes included the works of Bray et al. (1993) on
bacterial chemotaxis, Novak & Tyson (1993) on frog
egg cell cycles, Goldbeter (1995) and Ruoff & Rensing
(1996) on circadian rhythms in Drosophila and Neuro-
spora, Reinitz et al. (1995) on fruit fly morphogenesis
and McAdams & Shapiro (1995) on bacterial circuits.

By 2000, a major shift in opinion was developing in
favour of quantitative modelling in molecular cell
biology. This shift was powered by a growing number
of significant theoretical contributions (Arkin et al.
1998; Sharp & Reinitz 1998; Van Dassow et al. 2000;
Asthagiri & Lauffenburger 2001), an increasing recog-
nition among molecular biologists of the field’s need for
mathematical models (table 1) and the commitment of
key administrators at NIH, NSF, DOE and elsewhere to
target research support to quantitative biology.

4. MODERN DEVELOPMENTS

Since 2000, the field of molecular systems biology has
blossomed, with the founding of an International Society
for Systems Biology (www.iscb.org), of new institutes,
centres and departments of systems biology across the
world, and of high-profile journals (Molecular Systems
Biology, PLoS Computational Biology). It is not practical
here to review all the great works that have been
published in recent years, but we will mention some
developments that are particularly relevant to the KITP
workshop on biological switches and clocks.

Perhaps the most compelling proof of the relevance of
quantitative modelling in molecular cell biology was the

J. R. Soc. Interface (2008)

design of artificial genetic networks that function as
toggle switches and oscillators, in Jim Collins’ labora-
tory at Boston University (Gardner et al. 2000) and Stan
Leibler’s laboratory at Princeton University (Elowitz &
Leibler 2000). Both circuits were designed first in
computer models quite similar to equations (2.5) and
(2.7) of Griffith. Building the circuits in bacteria was a
standard exercise in genetic engineering; the tricky part
was engineering the proteins to have the right kinetic
rate constants for synthesis and degradation. The
models predicted ranges for these rate constants that
must be respected in order to observe the desired
behaviour, and the circuits behaved exactly as predicted
by the models. From these pioneering demonstrations
has arisen a new and exciting technology called synthetic
biology (Hasty et al. 2001).

An example of how modelling can be used to design
gene regulatory networks of specific functionality is found
in the article by Conrad et al. (2008) in this special issue.
They are interested in networks that respond to an input
pulse train as a ‘resonator’ (i.e. output signal only if the
pulse train has a desired frequency) or as an ‘integrator’
(i.e. output signal only after a desired total number of
pulses). For a variety of network topologies, they show
that either functionality can be achieved, provided the
kinetic rate constants in the model are chosen within an
appropriate range of values. That is to say, functionality
is tied not so much to topology as to rate constant values.
Hence, in designing gene regulatory networks, it is
essential to pick not only a suitable network topology
but also to engineer the rate constants into the correct
range for the desired behaviour.

Quantitative modelling has also had a major impact
on our understanding of the molecular basis of circadian
rhythms. As new genes and proteins have been
discovered and their roles in circadian physiology
worked out, mathematical models of the regulatory
network have become more sophisticated and accurate
(Leloup & Goldbeter 2000; Forger & Peskin 2003; Locke
et al. 2005; Ruoff et al. 2005a). Because the physiology
and molecular biology of circadian rhythms are suf-
ficiently different in diverse organisms (bread moulds,
plant cells, fruit flies, mammals), models must be
tailored to specific organisms, while also laying bare
some of the unifying principles of circadian control in
eukaryotes. Circadian rhythms of cyanobacteria, on the
other hand, are controlled by a completely different
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molecular mechanism that has provided a challenging
problem for mathematical modellers (Emberly &
Wingreen 2006; Mehra et al. 2006; Mori et al. 2007,
van Zon et al. 2007). Many crucial properties of
circadian physiology, such as temperature compen-
sation, synchronization and phase resetting, are
inherently dynamical in nature and require precise
theoretical descriptions to be understood and mana-
ged (Ruoff 1992; Rand et al. 2004; Stelling et al. 2004;
Ruoff et al. 2005b; Kurosawa & Iwasa 2005; Bagheri
et al. 2007; Hong et al. 2007). In this special issue,
Bagheri et al. (2008) used systems-theoretic tools
(mathematical control theory) to explore the phase
response characteristics of a noisy circadian clock model,
in order to understand how populations of oscillators
entrain one another to generate a robust rhythm and
how the rhythm re-synchronizes to an external 24 hours
light-dark cycle from an initial 8 hours phase shift (say,
flying between Chicago and Paris).

The molecular machinery controlling cell growth
and division in yeast cells, embryos and mammalian
somatic cells received a great deal of attention from
molecular biologists in the 1990s, with a few theoretical
groups trying to keep pace with the flood of genetic and
biochemical data (Obeyesekere et al. 1996; Kohn 1998;
Aguda & Tang 1999; Chen et al. 2000; Qu et al. 2004).
Although the experimentalists paid little attention to
modellers during this time, in recent years there have
appeared many influential papers that self-consciously
test (and confirm) predictions of the models (Cross
et al. 2002, 2005; Cross 2003; Pomerening et al. 2003;
Sha et al. 2003) or bring modelling to bear on
experimental design and interpretation (Pomerening
et al. 2005; Queralt et al. 2006). All eukaryotes use the
same basic mechanism, based on cyclin-dependent
kinases, to regulate the progression of DNA synthesis,
mitosis and cell division (Csikasz-Nagy et al. 2006), but
the idiosyncrasies of specific cell types require speci-
fically tailored mathematical models (Chen et al. 2004;
Calzone et al. 2007). The cell cycles of bacteria are
regulated by a completely different set of genes and
proteins, unrelated to the eukaryotic control system,
and modellers have focused on specific details of the
gene—protein interaction network in a-proteobacteria
(Shen et al. 2007; Li et al. 2008), as well as convergent
evolution of the dynamical properties of the two
distinct control systems (Brazhnik & Tyson 2006).

Signalling networks have also provided a rich testing
ground for mathematical modelling of molecular regulat-
ory networks. The classic example, bistability in the lac
operon, has received thorough attention over the years,
as reviewed by Santillan & Mackey (2008) in this issue.
In the late 1990s, Ferrell and colleagues published a
series of papers on the MAP kinase pathway in Xenopus
eggs, in which they experimentally demonstrated bist-
ability of its response to progesterone signals, and used
modelling to suggest that this bistability is due to
positive feedback in the signalling pathway (Ferrell &
Machelder 1998; Ferrell & Xiong 2001). Recently,
Kholodenko and others have shown theoretically that
positive feedback in the MAP kinase pathway is not
necessary for bistability but can arise subtly from the
multisite phosphorylation reactions that are ubiquitous

J. R. Soc. Interface (2008)

features of these kinase cascades (Markevich et al
2004; Gunawardena 2005; Chickarmane et al. 2007). A
major emphasis of the workshop was modelling of
signalling networks, for example, pheromone signalling
in yeast (Behar et al 2007), bacterial chemotaxis
(Keymer et al. 2006), regulatory circuits in the AIDS
virus (Weinberger & Shenk 2007; Weinberger et al.
2008) and osmo-adaptation in yeast (Mettetal et al.
2008). In this special issue, the relevant contributions are
by Csikasz-Nagy & Soyer (2008) on ‘adaptation’ in a
simple biochemical network and by Jang & Gomer
(2008) on size regulation in Dictyostelium.

In all these cases, the molecular reaction networks
are known to be very complex and full of regulatory
signals (feedback and feed-forward). The networks
generate complex dynamical activity that is crucial to
the survival, behaviour, development and reproduction
of the living cell. Correlating the physiology of cells to
the underlying molecular networks is no longer possible
by intuitive biochemical reasoning, and mathematical
models now play a central role in uncovering these
correlations, framing our mechanistic hypotheses, and
testing their implications. This new wave of realistic
modelling and rigorous testing requires a new gener-
ation of computational tools for model building, model
composition, simulation of real experimental protocols,
comparison of simulations to a large array of experi-
mental data, estimation of kinetic parameters from the
data, statistically significant tests of model predictions,
assessments of model sensitivity and robustness, and
systematic analysis of mechanistic alternatives. Much
progress has been made on this front, as demonstrated
by the sophisticated tools now available to modellers.

— Virtual Cell, http://www.nrcam.uchc.edu/

— Copasi (Complex Pathway Simulator), http://www.
copasi.org/tiki-index.php

— Systems Biology Workbench, http://www.sys-bio.
org/research /sbwintro.htm

— E-Cell, http://www.e-cell.org/ecell/

— JigCell, http://jigcell.biol.vt.edu/

— Cell Designer, http://www.celldesigner.org/

— Silicon Cell, http://homepages.cwi.nl/ ~gollum/SiC/

Nonetheless, the computational challenges confronting
the field are great, and much work is desperately needed
in the area of tool development. In this regard, the
paper by Rand (2008) in this special issue presents a
sophisticated and promising new approach to the
thorny problem of parameter estimation in complex
network models with many parameters.

Modelling by discrete networks and stochastic
processes were two other foci of the workshop. Discrete
(Boolean) models, pioneered by Kauffman, Glass and
Thomas (Kauffman 1969; Thomas 1973; Glass 1975),
have been used to advantage recently in a variety of
areas, including development (Albert & Othmer 2003;
Chaves et al. 2005), immunology (Thakar et al. 2007)
and cell cycle (Li et al. 2004; Faure et al. 2006; Davidich &
Bornholdt 2008). This approach is nicely represented
by two articles in this special issue. Chaves & Albert
(2008) used Boolean models to study the effects of cell
division on expression patterns of the segment-polarity
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genes during Drosophila embryonic development, and
Bornholdt (2008) reviewed the strengths and limitations
of Boolean modelling of cell cycle regulation. Stochastic
models of signalling networks (Ozbudak et al 2002;
Thattai & Van Oudenaarden 2004; Acar et al. 2008) and
circadian rhythms (Forger & Peskin 2005; Yi & Jia 2005;
Gonze & Goldbeter 2006) were discussed in some detail.
In this special issue, Gonze et al. (2008) presented a
stochastic version of their model of stress-induced
oscillatory shuttling of Msn2 (a yeast transcription
factor) between nucleus and cytoplasm.

Finally, the participants engaged in some lively
discussions about if, when and how to introduce
mathematical modelling into molecular cell biology
classes at the undergraduate level. The majority opinion
was that undergraduate students should be introduced
to quantitative modelling and that this might reasonably
be done with the aid of ‘teaching modules’ designed to
complement standard textbooks. These ideas are elabo-
rated in an article by Sible and Holmes (‘Teaching at the
interface: does computational cell biology fit in the
undergraduate curriculum’) to be published elsewhere.

5. LOOKING FORWARD

The KITP workshop brought together theoreticians
and experimentalists to discuss successful collabor-
ations, gripe about existing hurdles and forge new
collaborations at the interface of math and cell biology.
This special issue documents some of these success
stories and problematic areas. The field of compu-
tational cell biology is here to stay, and the future looks
very bright indeed (Goldbeter 2002).
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